интегрируем

интегрируем
1. integrate

интегрировать по частям — integrate by parts

интегрировать подстановкой — integrated by substitution

2. integrated

интегрировал по частям; интегрируемый по частям — integrated by parts


Русско-английский новый политехнический словарь. 2005.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… …   Физическая энциклопедия

  • Кратный интеграл Римана — Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана , если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… …   Википедия

  • Ортогональная система функций —         система функций {(φn (x)}, n = 1, 2,..., ортогональных с весом ρ (х) на отрезке [а, b], т. е. таких, что                   Примеры. Тригонометрическая система 1, cos nx, sin nx; n = 1, 2,..., О. с. ф. с весом 1 на отрезке [ π, π]. Бесселя …   Большая советская энциклопедия

  • Фурье ряд —         Тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид                  где a0, an, bn (n ≥ 1) Фурье коэффициенты. В зависимости от того …   Большая советская энциклопедия

  • Физическая астрономия — так называлась со времен Кеплера совокупность сведений и теорий о строении и действительном движении в пространстве небесных светил в противоположность сферической астрономии, изучающей видимое для нас положение светил на фиктивной небесной сфере …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • ВАРИАЦИЯ ОТОБРАЖЕНИЯ — числовая характеристика отображения, связанная с его дифференциальными свойствами. Определена С. Банахом [1]. Ниже дается определение лишь для двумерного случая. Рассмотрим отображение где и непрерывные на квадрате X функции. Говорят, что… …   Математическая энциклопедия

  • ВИНЕРА ИНТЕГРАЛ — абстрактный интеграл лебе говского типа по множествам бесконечномерного функционального пространства от функционалов, определенных на этих множествах. В. и. введен Н. Винером (N. Wiener) в 20 х гг. 20 в. в связи с вопросами броуновского движения… …   Математическая энциклопедия

  • ЛАГЕРРА МНОГОЧЛЕНЫ — многочлены Чебышева Лагерра, многочлены, ортогональные на интервале с весовой функцией где a> 1. Стандартизованные Л. м. определяются формулой представление с помощью гамма функции: В применениях наиболее важны формулы: Многочлен удовлетворяет …   Математическая энциклопедия

  • ПАРСЕВАЛЯ РАВЕНСТВО — равенство, выражающее квадрат нормы элемента в векторном пространстве со скалярным произведением через квадраты модулей коэффициентов Фурье этого элемента по нек рой ортогональной системе элементов; так, если X нормированное сепарабельное… …   Математическая энциклопедия

  • ФУРЬЕ РЯД — по ортогональным многочленам ряд вида где многочлены { Р п (х)} ортонормированы на интервале ( а, b )с весом h(х)(см. Ортогональные многочлены),а коэффициенты { а n} вычисляются но формуле причем функция f(x) входит в класс функций L2=L2[a, b, h… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”